Two Sum II - Input Array Is Sorted

Easy
Two Pointers

Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where 1 <= index1 < index2 <= numbers.length.

Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2.

The tests are generated such that there is exactly one solution. You may not use the same element twice.

Your solution must use only constant extra space.

Example 1

Input: numbers = [2,7,11,15], target = 9
Output: [1,2]
Explanation: The sum of 2 and 7 is 9. Therefore, index1 = 1, index2 = 2. We return [1, 2].

Example 2

Input: numbers = [2,3,4], target = 6
Output: [1,3]
Explanation: The sum of 2 and 4 is 6. Therefore index1 = 1, index2 = 3. We return [1, 3].

Example 3

Input: numbers = [-1,0], target = -1
Output: [1,2]
Explanation: The sum of -1 and 0 is -1. Therefore index1 = 1, index2 = 2. We return [1, 2].

Constraints

  • 2 <= numbers.length <= 3 * 10^4
  • -1000 <= numbers[i] <= 1000
  • numbers is sorted in non-decreasing order
  • -1000 <= target <= 1000
  • The tests are generated such that there is exactly one solution.
Show Hints (3)
Hint 1: Since the array is sorted, what technique can efficiently find two numbers that sum to a target?
Hint 2: Start with pointers at both ends. If the sum is too large, move the right pointer left. If too small, move the left pointer right.
Hint 3: This is the classic two pointers technique on a sorted array with O(n) time and O(1) space.
Loading editor...

Test Results

Click "Run" to execute your code against test cases

AI Tutor

Socratic guidance - I'll ask questions, not give answers

AI Tutor
Hello! I'm your AI tutor, here to guide you through this problem using the Socratic method. I won't give you direct answers, but I'll ask questions and provide hints to help you discover the solution yourself. What's your first instinct when you look at this problem? What approach comes to mind?